64 research outputs found

    Efficiency of Non-Truthful Auctions in Auto-bidding with Budget Constraints

    Full text link
    We study the efficiency of non-truthful auctions for auto-bidders with both return on spend (ROS) and budget constraints. The efficiency of a mechanism is measured by the price of anarchy (PoA), which is the worst case ratio between the liquid welfare of any equilibrium and the optimal (possibly randomized) allocation. Our first main result is that the first-price auction (FPA) is optimal, among deterministic mechanisms, in this setting. Without any assumptions, the PoA of FPA is nn which we prove is tight for any deterministic mechanism. However, under a mild assumption that a bidder's value for any query does not exceed their total budget, we show that the PoA is at most 22. This bound is also tight as it matches the optimal PoA without a budget constraint. We next analyze two randomized mechanisms: randomized FPA (rFPA) and "quasi-proportional" FPA. We prove two results that highlight the efficacy of randomization in this setting. First, we show that the PoA of rFPA for two bidders is at most 1.81.8 without requiring any assumptions. This extends prior work which focused only on an ROS constraint. Second, we show that quasi-proportional FPA has a PoA of 22 for any number of bidders, without any assumptions. Both of these bypass lower bounds in the deterministic setting. Finally, we study the setting where bidders are assumed to bid uniformly. We show that uniform bidding can be detrimental for efficiency in deterministic mechanisms while being beneficial for randomized mechanisms, which is in stark contrast with the settings without budget constraints

    An auction-based market equilibrium algorithm for a production model

    Get PDF
    AbstractWe present an auction-based algorithm for computing market equilibrium prices in a production model, in which producers have a single linear production constraint, and consumers have linear utility functions. We provide algorithms for both the Fisher and Arrow–Debreu versions of the problem

    User Response in Ad Auctions: An MDP Formulation of Long-Term Revenue Optimization

    Full text link
    We propose a new Markov Decision Process (MDP) model for ad auctions to capture the user response to the quality of ads, with the objective of maximizing the long-term discounted revenue. By incorporating user response, our model takes into consideration all three parties involved in the auction (advertiser, auctioneer, and user). The state of the user is modeled as a user-specific click-through rate (CTR) with the CTR changing in the next round according to the set of ads shown to the user in the current round. We characterize the optimal mechanism for this MDP as a Myerson's auction with a notion of modified virtual value, which relies on the value distribution of the advertiser, the current user state, and the future impact of showing the ad to the user. Moreover, we propose a simple mechanism built upon second price auctions with personalized reserve prices and show it can achieve a constant-factor approximation to the optimal long term discounted revenue

    Prior-Independent Auctions for Heterogeneous Bidders

    Full text link
    We study the design of prior-independent auctions in a setting with heterogeneous bidders. In particular, we consider the setting of selling to nn bidders whose values are drawn from nn independent but not necessarily identical distributions. We work in the robust auction design regime, where we assume the seller has no knowledge of the bidders' value distributions and must design a mechanism that is prior-independent. While there have been many strong results on prior-independent auction design in the i.i.d. setting, not much is known for the heterogeneous setting, even though the latter is of significant practical importance. Unfortunately, no prior-independent mechanism can hope to always guarantee any approximation to Myerson's revenue in the heterogeneous setting; similarly, no prior-independent mechanism can consistently do better than the second-price auction. In light of this, we design a family of (parametrized) randomized auctions which approximates at least one of these benchmarks: For heterogeneous bidders with regular value distributions, our mechanisms either achieve a good approximation of the expected revenue of an optimal mechanism (which knows the bidders' distributions) or exceeds that of the second-price auction by a certain multiplicative factor. The factor in the latter case naturally trades off with the approximation ratio of the former case. We show that our mechanism is optimal for such a trade-off between the two cases by establishing a matching lower bound. Our result extends to selling kk identical items to heterogeneous bidders with an additional O(ln2k)O\big(\ln^2 k\big)-factor in our trade-off between the two cases

    The Power of Two-sided Recruitment in Two-sided Markets

    Full text link
    We consider the problem of maximizing the gains from trade (GFT) in two-sided markets. The seminal impossibility result by Myerson shows that even for bilateral trade, there is no individually rational (IR), Bayesian incentive compatible (BIC) and budget balanced (BB) mechanism that can achieve the full GFT. Moreover, the optimal BIC, IR and BB mechanism that maximizes the GFT is known to be complex and heavily depends on the prior. In this paper, we pursue a Bulow-Klemperer-style question, i.e. does augmentation allow for prior-independent mechanisms to beat the optimal mechanism? Our main result shows that in the double auction setting with mm i.i.d. buyers and nn i.i.d. sellers, by augmenting O(1)O(1) buyers and sellers to the market, the GFT of a simple, dominant strategy incentive compatible (DSIC), and prior-independent mechanism in the augmented market is least the optimal in the original market, when the buyers' distribution first-order stochastically dominates the sellers' distribution. Furthermore, we consider general distributions without the stochastic dominance assumption. Existing hardness result by Babaioff et al. shows that no fixed finite number of agents is sufficient for all distributions. In the paper we provide a parameterized result, showing that O(log(m/rn)/r)O(log(m/rn)/r) agents suffice, where rr is the probability that the buyer's value for the item exceeds the seller's value
    corecore